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Abstract 23 
 24 

Background and Objective: It is common to combine biomechanical modeling and medical images 25 

for multimodal analyses. However, mesh-image mismatch may occur that prevents direct information 26 

exchange. To eliminate mesh-image mismatch, we develop a simple but elegant displacement voxelization 27 

technique based on image voxel corner nodes to achieve voxel-wise strain. We then apply the technique to 28 

derive dense white matter fiber strains along whole-brain tractography (~35 k fiber tracts consisting of ~3.3 29 

million sampling points) resulting from head impact.  30 

Methods: Displacements at image voxel corner nodes are first obtained from model simulation via 31 

scattered interpolation. Each voxel is then scaled linearly to form a unit hexahedral element. This allows 32 

convenient and efficient voxel-wise strain tensor calculation and displacement interpolation at arbitrary 33 

fiber sampling points via shape functions. Fiber strains from displacement interpolation are then compared 34 

with those from the commonly used strain tensor projection using either voxel- or element-wise strain 35 

tensors.  36 

Results: Based on a synthetic displacement field, fiber strains interpolated from voxelized 37 

displacement are considerably more accurate than those from strain tensor projection relative to the 38 

prescribed ground-truth (determinant of coefficient (Ὑ ) of 1.00 and root mean squared error (RMSE) of 39 

0.01 vs. 0.87 and 0.10, respectively). For a set of real-world reconstructed head impacts (N=53), the strain 40 

tensor projection method performs similarly poorly (Ὑ  of 0.80ï0.90 and RMSE of 0.03ï0.07), with 41 

overestimation strongly correlated with strain magnitude (Pearson correlation coefficient >0.9). Up to ~15% 42 

of the fiber strains are overestimated by more than the lower bound of a conservative injury threshold of 43 

0.09. The percentage increases to ~37% when halving the threshold. Voxel interpolation is also significantly 44 

more efficient (15 sec vs. 40 sec for element strain tensor projection, without parallelization).  45 

Conclusions: Voxelized displacement interpolation is considerably more accurate and efficient in 46 

deriving dense white matter fiber strains than strain tensor projection. The latter generally overestimates 47 

with overestimation magnitude strongly correlating with fiber strain magnitude. Displacement voxelization 48 

is an effective technique to eliminate mesh-image mismatch and generates a convenient image 49 
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representation of tissue deformation. This technique can be generalized to broadly facilitate a diverse range 50 

of image-related biomechanical problems for multimodal analyses. The convenient image format may also 51 

promote and facilitate biomechanical data sharing in the future.  52 

 53 

Keywords: biomechanical model, medical imaging, finite element method, multimodal analysis, strain 54 
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1. Introduction  58 

The finite element (FE) method has been widely applied to study a wide array of biomedical 59 

problems [1], including the simulation of biomechanical behavior of diverse biological tissues (e.g., soft 60 

tissue [2], bone [3]) under different loading conditions (e.g., surgery [4] and injury [5]). Combining FE-61 

based biomechanical modeling with medical imaging is also a common practice as it allows for multimodal 62 

analysis to enable their mutual validation and the generation of personalized models [6,7]. Typically, 63 

biomechanical models use discretized mesh nodes and elements to sample displacement and stress/strain, 64 

respectively [8]. Mesh elements can be of many shapes or combinations of different shapes, such as 65 

triangles and quadrilaterals in two-dimension (2D), or tetrahedrons and hexahedrons in three-dimension 66 

(3D), provided that they satisfy numerical accuracy requirements. There are no size restrictions either, 67 

although smaller elements are desired for improved accuracy in FE simulation, and they are also typically 68 

used in regions that would experience greater response gradient. Both nodes and their connectivity 69 

relationship expressed in elements are necessary to determine the spatial discretization scheme.  70 

In comparison, medical images typically employ regularly shaped pixels or voxels (in 2D or 3D, 71 

respectively) to sample anatomical and/or physiological information such as tissue property [9]. This 72 

sampling scheme is much more restrictive because pixels/voxels need to conform to a lattice or grid pattern. 73 

In addition, their spatial resolution (i.e., physical dimension for each pixel or voxel) along each anatomical 74 

axis is also fixed, although they may differ among the major axes. Because of these restrictions, an image 75 

resolution and the directions of major axes are sufficient to determine the spatial discretization scheme.  76 

Nevertheless, when the mesh and image spatial discretization schemes do not align in space, mesh-77 

image mismatch would occur. For example, mesh element centroids do not align with pixel/voxel centroids. 78 

This would prevent direct information exchange. To resolve mesh-image mismatch, deformation response 79 

resampling is often necessary, that is, to interpolate element-wise strains at image pixel/voxel centroids 80 

[10ï12]. A maximum of 6 interpolations are necessary to generate a complete strain tensor field in 3D [12]. 81 

In addition, there could be concerns on the interpolation accuracy given that element-wise strains could be 82 
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discontinuous at the element boundary. A systematic investigation is lacking on how best to resolve the 83 

mesh-image mismatch problem to yield maximum accuracy and efficiency.  84 

In FE simulation and analysis, displacement field is first obtained by solving the system of 85 

equations, from which to derive stress/strain [8]. The latter are usually the response variables of interest 86 

across diverse biomechanical problems including, but not limited to, artery [13], tooth [14], stent [15], 87 

cartilage [16] and tendon [17] collagen, heart [18], and brain [5]. Both displacement and stress/strain sample 88 

a spatially continuous response field. Nevertheless, they are all ñforcedò to use a finite number of degrees-89 

of-freedom (DOFs) for response sampling, which leads to discretization errors [8]. Further resampling the 90 

already discretized deformation field in order to conform to an image voxel lattice would seem to amplify 91 

the error. This is particularly of concern in downstream biomechanical analysis such as deriving fiber strains 92 

along white matter fiber tracts from head impact simulation in the field of traumatic brain injury [19ï23]. 93 

Therefore, it is important to study how best to resample a deformation field to maximally preserve response 94 

accuracy and with high efficiency when transforming it into an image space for subsequent multimodal 95 

analysis. 96 

For linear FE elements most widely used (and virtually exclusively used in head injury models 97 

[5,24]), displacement varies linearly across elements. They lead to element-wise constant strain [8], which 98 

is discontinuous at the element boundary. This suggests that deformation resampling based on displacement, 99 

rather than the commonly used strain, may be more accurate. Nevertheless, an extra voxel-wise strain tensor 100 

calculation is necessary for a voxelized displacement field, as the response of interest is typically strain 101 

rather than displacement, itself. However, this calculation can be much simplified because regularly shaped 102 

voxels are a special type of hexahedral element that can be simply scaled linearly to a unit element. Standard 103 

element shape functions are then readily applicable.  104 

Therefore, the aim of this study is to develop a displacement voxelization scheme to resolve the 105 

common mesh-image mismatch problem and apply it to derive dense white matter fiber strains along the 106 

whole brain tractography due to head impact. We first verify our customized voxel-wise strain tensor 107 
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calculation through hexahedral element shape functions against Abaqus simulation. We then compare fiber 108 

strain accuracy and efficiency using voxelized displacement interpolation with the commonly used strain 109 

tensor projection method, based on either voxel- or element-wise strain tensor from model simulation [19ï110 

23]. The latter approach could be slow (e.g., ~28 min to process just the transcallosal fiber tracts over the 111 

course of an impact using an unoptimized code [25]). More importantly, its accuracy has not been verified, 112 

but this is critical as fiber strain is now thought to be more predictive of injury [19,22,26,27].  113 

If post-simulation displacement voxelization is effective for head impact simulation, it is 114 

anticipated to be applicable to other biomechanical problems as well. This simple but elegant technique 115 

allows generating an image representation of deformation to eliminate mesh-image mismatch. This could 116 

greatly simplify downstream calculations of voxel-wise strain tensor, which allows convenient image-based 117 

strain analyses and morphological operations without the usual disadvantage of a voxelized mesh used in 118 

numerical modeling. Given that mesh-image mismatch is common across diverse biomechanical fields [1], 119 

this technique can be generalized more broadly for seamless integration of biomechanical modeling and 120 

medical imaging for multimodal analyses. The convenient image format may also promote and facilitate 121 

biomechanical data sharing in the future, especially when it is not feasible to share the biomechanical model, 122 

itself. 123 

2. Methods 124 

2.1 Fiber strain and strain tensor from voxelized displacement field 125 

In this study, we consider white matter fiber tracts from tractography as a set of ordered and discrete 126 

sampling points that define geometrical line segments of fibers. Fiber strain, by definition, describes the 127 

relative stretch of each line segment, or the relative change in distance between two neighboring fiber 128 

sampling points. In fact, it can be directly determined by their difference in displacement interpolated from 129 

those of the surrounding nodes (via scattered interpolation; referred to as ñmesh interpolationò). However, 130 

this approach does not provide a voxelized deformation to resolve the mesh-image mismatch.  131 
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To rectify, we first ñvoxelizeò the displacement field by interpolating displacements at voxel corner 132 

nodes. For an image volume of size of ὴ ή ὶ, where ὴ, ή, and ὶ are the number of rows, columns, and 133 

frames along the three anatomical directions, y, x, and z, respectively, this requires displacement resampling 134 

at voxel corner nodal locations of size of ὴ ρ ή ρ ὶ ρ, as illustrated in Fig. 1. 135 

 136 

Fig. 1. Illustration of mesh-image mismatch, where an image volume of size of ὴ ή ὶ requires 137 

displacement resampling at voxel corner nodes of size of ὴ ρ ή ρ ὶ ρ to generate a voxel-138 

wise strain tensor field that will conform to the given image volume. To improve visualization, only a 2D 139 

projection is shown. An arbitrary region can be sampled at multiple and arbitrary resolutions to yield a 140 

multiresolution representation, if needed.   141 

 142 

A voxel is a special 8-noded hexahedral element that can be simply scaled linearly to form a unit 143 

cube. This allows displacement interpolation at arbitrary fiber sampling points directly via hexahedral 144 

element shape functions (after proper scaling to yield an isotropic voxel resolution of dimensionless 2 in a 145 

natural coordinate system given by ‚, –, and ‒):  146 
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Ἵ В ὔ ‚ȟ–ȟ‒◊ . (1) 147 

where ◊ are the voxel corner node displacements and ὔ ‚ȟ–ȟ‒ are the shape functions represented as 148 

an 8 3 matrix for a given hexahedral element (with one integration point at element centroid).   149 

Fiber strain can then be similarly determined by the difference in displacement of two neighboring 150 

fiber sampling points as interpolated from the corner nodes of the enclosing voxel (referred to as ñvoxel 151 

interpolationò). Localizing the corresponding enclosing voxel is greatly simplified into identifying the 152 

closest integer along the three major axes (round.m in MATLAB; after proper scaling).  153 

To summarize, an image volume is first used to generate voxel corner nodes. Their displacements 154 

are obtained from FE nodal displacements via scattered interpolation. For each white matter fiber sampling 155 

point, the corresponding displacement is then determined through hexahedral shape functions based on the 156 

enclosing voxel. The displacement difference between two adjacent fiber sampling points readily 157 

determines the corresponding strain.   158 

 159 

2.2 Strain tensor projection 160 

To derive voxel-wise strain tensor, the deformation gradient, ἐ, is calculated as: 161 

ἐ ἓ Ἵɳ ἓ
Ἵ

ἦ
ἓ

Ἵ

ἦ
ἓ

Ἵ
ἔ  , (2) 162 

where ╧ are the voxel corner node coordinates in the global coordinate system, ‚ȟ–ȟ‒ are their 163 

corresponding nodal coordinates in the natural coordinate system, and ἓ is an identity matrix. ἔ
ἦ
 is the 164 

Jacobian matrix, which is calculated as the transpose of the shape functions (matrix of size of 3 8) 165 

multiplied by the nodal coordinates of the 8 element nodes (matrix of size of 8 3, with each row 166 

representing the three coordinates of a given node). The outcome then leads to a 3 3 Jacobian matrix. In 167 

this study, we calculate engineering strain following the finite strain theory (which can be easily extended 168 

to other types of strain measures [8]), as it is directly available from Abaqus to verify our customized 169 
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MATLAB i mplementation. The following hold: 170 

ἤ Ѝἐ ἐ , (3) 171 

ἤ ἓ . (4) 172 

where ἤ is the left stretch tensor in the current configuration, and  is the engineering strain tensor of 173 

interest [28].  For a regularly shaped voxel, ἔ degenerates into a 3 3 matrix whose only non-zero elements 174 

are along the matrix diagonal. For an isotropic voxel of the same resolution along the three major axes, ἔ 175 

further degenerates into an identity matrix, ἓ (with a proper scaling). This greatly simplifies the customized 176 

implementation because no explicit and costly matrix inversion is necessary to calculate the inverse of ἔ in 177 

Eqn. 2, which is also critical for achieving a high efficiency.  178 

To project strain tensor based on voxelized displacement or FE elements (referred to as ñvoxelò or 179 

ñelementò tensor projection, respectively), the global coordinate system is rotated so that its z-axis is aligned 180 

with the fiber tangential direction determined from a forward difference method. Due to large rotation, it is 181 

important to account for the change in fiber orientation before strain tensor projection [29]. For voxelized 182 

displacement, the current fiber orientation is achieved by the updated fiber sampling point displacements 183 

via shape functions. For FE mesh-based displacement, the updated displacements are obtained through 184 

scattered interpolation instead.   185 

Finally, strain tensor in the rotated coordinate system is obtained: 186 

ἢ ἢ , (5) 187 

where the 4-by-4 matrix, T, is the rigid body transformation from the global to the local coordinates. Fiber 188 

strain, ʀ, at the given sampling point is then available through the following equation:  189 

‐ ‐  . (6) 190 

To summarize, voxel-wise strain tensor is efficiently calculated using hexahedral shape functions 191 

due to the degenerated Jacobian matrix. The current white matter fiber orientation is then determined from 192 
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the updated fiber sampling point locations before stain tensor projection, for which the global coordinate 193 

system is rotated so that its z-axis is aligned with the current fiber tangential direction. Of note, the updated 194 

fiber sampling point locations can be directly used to determine fiber strain. Therefore, strain tensor 195 

projection is, in fact, unnecessary. Nevertheless, we employed this method for accuracy comparisons.  196 

 197 

2.3 Anisotropic Worcester Head Injury Model V2.0 198 

We employed the anisotropic Worcester Head Injury Model (WHIM) V2.0 (Fig. 2) [30] for testing. 199 

The model contains 227.4 k nodes and 202.8 k hexahedral elements for the brain (with an average element 200 

size of 1.8 ° 0.4 mm) and 221.1 k nodes and 440 k membrane elements for the cerebral vasculatures (with 201 

an average element size of 1 mm). It also has a co-registered companion whole-brain tractography 202 

consisting of ~35 k fibers, represented by a total of ~3.3 million ordered sampling points with 1 mm relative 203 

distance between two adjacent points [25]. The head coordinate system was chosen such that the posterior-204 

to-anterior, right-to-left, and inferior-to-superior directions corresponded to the x, y, and z directions, 205 

respectively. 206 

 207 

Fig. 2. Anisotropic Worcester Head Injury Model V2.0 showing the mesh (a), element-wise fiber directions 208 

based on whole-brain tractography (b), and cerebral vasculatures including arteries, veins, and sinuses (c). 209 

 210 

 211 
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2.4 Synthetic displacement field to verify voxel-wise strain tensor calculation 212 

To first verify our customized implementation of voxel-wise strain tensor calculation, a layer of 213 

voxels of size of 19 19 1 was generated, with an isotropic resolution of dimensionless 2. This led to voxel 214 

corner nodes of size of 2020 2 (Fig. 3a). For each node at location, (x, y, z), a radial vector emanating 215 

from the origin, Ἶᴆ, was determined. The nodal displacement was then specified according to the following 216 

equation that uses a sine function to regulate a nonlinear deformation pattern:  217 

Ἤ ÓÉÎπȢυ ὼ ώ ᾀ Ἶᴆ . (7) 218 

The scaling factor, 0.5, was empirically chosen to produce a reasonable displacement magnitude without 219 

excessive distortion. The resulting deformed voxels are shown in Fig. 3b. Their voxel-wise strain tensors 220 

were calculated according to Eqns. 1ï4 in MATLAB . To compare with the ñground-truthò from Abaqus 221 

simulation, each voxel was converted into a hexahedral element, with displacements of its eight nodes 222 

prescribed as boundary conditions. Element type, C3D8R, was used, which has one integration point as 223 

adopted in the customized implementation.  224 

 225 

 226 

Fig. 3. Comparison of the (a) undeformed and (b) deformed block of voxels also shown as meshes. Each 227 

voxel has an isotropic resolution of dimensionless 2 and is converted into the corresponding hexahedral 228 

element.  229 

 230 
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2.5 Synthetic displacement field for white matter fiber strains 231 

To benchmark accuracy of displacement voxelization to calculate white matter fiber strains, a 232 

synthetic, nonlinear, and in-plane axial shear deformation field was devised to simulate injury-causing shear 233 

strain [8]. The displacement magnitude, Ὠ, was determined by a sine function to emulate in vivo brain 234 

harmonic motion [31]: 235 

Ἤ ρπÓÉÎπȢρ ὶἶᴆ , (8) 236 

where ὶ (in mm) is the xy-plane distance relative to the head center of gravity: 237 

ὶ ὼ ώ  , (9) 238 

and ἶᴆ is the counter-clockwise tangential direction normal to the in-plane radial direction (Fig. 4). The 239 

displacement magnitude was chosen to produce typical strain levels that could occur in real-world 240 

concussive impacts.  241 

 242 

 243 

Fig. 4. Synthetic displacement field is applied to element nodes and fiber sampling points to compute 244 

ñground-truthò fiber strains for 100 randomly selected fiber tracts (a; only displacement magnitude is 245 

shown). Element nodal displacements are used to resample at voxel corner nodes of an image volume 246 

(isotropic ñpixelò resolution on an axial imaging plane is set to 4 mm here to improve visualization, vs. an 247 

isotropic resolution of 1.8 mm used in analysis; b). Illustration of engineering fiber strain calculation (c).  248 
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The displacement field was applied to all WHIM nodes and white matter fiber sampling points, 249 

which would generate the ñground-truthò. Element nodal displacements were then used to resample at voxel 250 

corner nodes of an image volume. Its isotropic voxel resolution was set to be 1.8 mm to match with the 251 

average brain element size. Ground-truth fiber strains at 100 randomly selected fiber tracts (~9000 sampling 252 

points and fiber segments) were used to benchmark accuracy among the four methods: mesh interpolation, 253 

voxel interpolation, and strain tensor projection based on either voxels or elements.  254 

2.6 Application to real-world head impacts 255 

Laboratory reconstructed head impacts from the National Football League (NFL) [32] were used 256 

for further accuracy comparison. This dataset includes 53 reconstructed head impacts and offers a range of 257 

impact severities and strain magnitudes for evaluation (Fig. 5). For each impact, the head rotational velocity 258 

temporal profile was used as input for impact simulation. Fiber strains along the whole brain tractography 259 

were calculated at the time when the peak maximum principal strain (MPS; assessed at the 95th percentile 260 

level) was reached. This ensured that strains were compared for a given unique displacement field.  261 

 262 

Fig. 5. Histogram of the peak rotational velocity (a) and peak MPS (b) for the 53 reconstructed head impacts, 263 

along with the distribution of the peak MPS across the 20 concussive and 33 non-injury cases (c). One 264 

concussive case ('Case077HD02') was selected for further detailed illustration (arrow).  265 

2.7 Data analysis 266 

For the synthetic displacement field designed to stress test the customized strain tensor calculation, 267 
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the determinant of coefficient, Ὑ , and root mean squared error, RMSE, relative to result from Abaqus 268 

simulation were evaluated for each strain tensor component. To obtain Ὑ  between a pair of predicted and 269 

observed data (Ὢ and ώ, respectively, with Ὥ ranging from 1 to the number of samples), the residual sum of 270 

squares and total sum of squares (ὛὛ  and ὛὛ , respectively) are first obtained:  271 

ὛὛ В ώ Ὢ   , (10) 272 

ὛὛ В ώ ώ   , (11) 273 

where ώ is the mean of the observed data. Then, Ὑ  is defined as the following:  274 

Ὑ ρ   . (12) 275 

When Ὑ  is 1.0, ὛὛ  will be zero, indicating that the predicted values exactly match the observed 276 

counterparts.  277 

For the synthetic displacement field used to benchmark the accuracy of white matter fiber strain 278 

using the four competing techniques (i.e., mesh interpolation, voxel interpolation, voxel tensor projection, 279 

and element tensor projection), Ὑ , and RMSE were compared against the known or prescribed ground-280 

truth fiber strains to identify the ñmost accurateò baseline method.  281 

For real-world impacts, ñground-truthò fiber strains were unavailable because of uncertainties in 282 

head injury model validation [33,34]. Therefore, the baseline method from the synthetic displacement 283 

comparison was used to benchmark the accuracies of other methods in terms of Ὑ  and RMSE. Note, the 284 

accuracy assessment here is separate from a different issue of model validation against the unknown 285 

ground-truth. To provide context of the relative errors, fiber strain differences relative to the baseline 286 

method were also compared to the lower bound of an injury threshold of 0.09 determined from an animal 287 

injury study [35]. The threshold value is similar to the optimal injury threshold identified when using the 288 

average fiber strain from WHIM as the injury predictor based on the reconstructed NFL head impacts [36]. 289 

It is also on the same order relative to injury-causing axonal microtubule strains [37,38]. To further verify 290 
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the customized strain tensor implementation (Eqns. 1ï4), the resulting MPS of the whole brain for an 291 

example head impact case was compared against the Abaqus counterpart. We chose MPS because it is 292 

currently the primary response variable of interest for studying brain injury biomechanics [5,8,33]. The 293 

head rotational velocity and acceleration profiles for the selected case are given in the Supplementary 294 

Material (Fig. S1).  295 

Finally, we suspected that the accuracy of the displacement voxelization technique as well as the 296 

voxel-wise strain tensor projection method would necessarily depend on the voxel spatial resolution. 297 

Therefore, we also increased the isotropic image voxel size from 1.8 mm to 4 mm to derive fiber strains 298 

using the displacement interpolation technique and strain tensor projection method for accuracy comparison.  299 

All impact simulations were conducted in Abaqus (Version 2018; Dassault Systèmes, France) on a 300 

Linux workstation (double precision, 15 CPUs, Intel Xeon E5-2698 with 256 GB memory, and 4 NVidia 301 

Tesla K80 GPUs with 12 GB memory). All other programs were implemented and further optimized for 302 

maximum efficiency in MATLA B (R2020a; MathWorks, Natick, MA)). All MATLAB computations were 303 

executed on an ordinary Windows 10 desktop computer (Intel Xeon E52623 v4 with 2 CPUs and 32 GB 304 

memory). No parallelization was used for objective efficiency comparison in this study. Statistical 305 

significance was defined at the level of 0.05.  306 

 307 

3. Results 308 

3.1 Synthetic displacement field for voxel-wise strain tensor calculation 309 

Fig. 6 compares our customized voxel-wise strain tensor calculation against Abaqus simulation for 310 

the synthetic displacement field illustrated in Fig. 3. Each sub-image shows the corresponding strain tensor 311 

component distribution on the undeformed image/mesh. For all components, the two were virtually 312 

identical, with Ὑ  of 1.00 and RMSE of ~4 10-4, except for ‐  and ‐  with a slightly degraded 313 

performance (Ὑ  of 0.99 and RMSE of 0.002). In part, this was due to loss of data precision when writing 314 
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the displacement boundary conditions into text files as required for Abaqus simulation.  315 

 316 

Fig. 6. Comparison of the six strain tensor components between our customized voxel-wise strain tensor 317 

calculations (top) and counterparts from Abaqus simulation (bottom). The undeformed and deformed 318 

images/meshes are shown in Fig. 3. 319 

 320 

3.2 Synthetic displacement field for fiber strains 321 

Fiber strains from mesh and voxel interpolations were both virtually identical to the prescribed 322 

ground-truth (Ὑ  of 1.00 with RMSE of 0.01). Voxel and element strain tensor projections also produced 323 

very similar results between themselves (Ὑ  of 0.98 with RMSE of 0.02). However, they were poorer 324 

compared to the ground-truth (Ὑ  of 0.87 with RMSE of 0.10; Fig. 7).  325 

 326 


